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Abstract

We derive an exact periodic-orbit expansion formula for the energy levels of
the three-pronged star graph. In addition, we present a proof of the ‘one-root-
per-root-cell’ property and derive exact periodic-orbit sum rules. A spin-off of
our periodic-orbit formulae is novel arithmetic series for π2.

PACS number: 03.65.Ge

1. Introduction

A graph is a network of edges and vertices, as shown in figure 1. A graph becomes a physical
quantum graph [1–4] if we imagine a quantum particle roaming on the graph. The dynamics
of the quantum particle is governed by the one-dimensional Schrödinger equation with the
boundary conditions of flux conservation at internal vertices and Dirichlet, Neumann or mixed
boundary conditions at the dead-end vertices of the graph.

At first glance, the graph in figure 1 looks like a stick molecule frequently used in
chemistry as a model of large molecules. Accordingly, quantum graphs have been used in
the past for computing various properties of molecules [5, 6]. Quantum graphs as a field of
study took off about a decade ago when Kottos and Smilansky [1, 2] investigated them in the
context of quantum chaos and complex systems. Quantum graphs, as models for complex
quantum systems [7], are attractive from an analytical point of view since they allow many of
their physical characteristics to be computed analytically and exactly. For instance, the level
density of a quantum graph can be expressed exactly as a sum over the classical periodic orbits
of the graph [1, 2].

About seven years ago it was discovered [8, 9] that for a class of quantum graphs, called
‘regular’, the energy levels themselves had exact periodic-orbit expansions. The very idea of
periodic-orbit expansions of individual energy levels was new and opened a new direction in
quantum graph research. Since then it was proved [10] that the direct expansion of energy
levels into an exact periodic-orbit sum is possible for all quantum graphs, not just the ‘regular’
ones. However, the explicit construction of such expansions is difficult and to date has been
accomplished only for some simple, linear (in the sense of non-branched) quantum graphs.
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Figure 1. Example of a graph. Nine edges (lines) connect nine vertices (dots).

Figure 2. Three-pronged star graph with three edges of lengths a, b and c, three dead-end
vertices Va, Vb and Vc terminating the three edges a, b and c, respectively, and one central
vertex V0. The central vertex is the origin of three local coordinate systems with coordinates
0 � xa � a, 0 � xb � b, and 0 � xc � c.

Going beyond the case of ‘regular’ quantum graphs, the purpose of this paper is to provide
exact periodic-orbit expansion formulae for the spectrum of the three-pronged star graph (see
figure 2) for which the ‘regularity condition’ [8] is not satisfied. Therefore, the three-pronged
star graph has not only a richer topology than the graphs studied before (it is branched), but
also a more complex spectrum. Nevertheless, as we will show below, this quantum graph, too,
can be solved explicitly.

Star graphs have been studied in the literature before [11–13]. However, the focus in
these papers is different, directed at the computation of statistical properties of star-graph
spectra. There is no attempt in any of these papers to compute individual energy eigenvalues
of quantum graphs exactly, explicitly via periodic-orbit expansions.

Because of the higher complexity of the spectrum of the three-pronged star graph, we have
to discuss the rational case and the irrational case of the three-pronged star graph separately.
In the rational case, the lengths of the edges of the three-pronged star graph are rationally
related; in the irrational case, at least one pair of edges are irrationally related. Sections 2–6
explicitly assume the irrational case; the rational case is discussed in section 8.

This paper is structured in the following way. In section 2, we derive the spectral equation
of the three-pronged star graph. In section 3, we study the organization of the spectral points
of the three-pronged star graph. In particular, we show that the spectral points exhibit a lattice
structure with only one spectral point per lattice cell. This global property of the spectrum is
the key to the construction of explicit periodic-orbit formulae in section 6. In section 4, we
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rederive the spectral equation using scattering quantization [1, 2, 14]. The scattering matrix
S constructed for this purpose is the basis for the construction of the spectral staircase and
the periodic-orbit formulae in section 6. In section 5, we state an explicit spectral formula
that still contains an integral. In section 6, we perform this integral explicitly and arrive at
an integral-free solution formula for the entire spectrum of the three-pronged star graph. In
section 7, we investigate the convergence properties of our periodic-orbit expansions. The
rational case is discussed in section 8. In some cases, the spectral points of the three-pronged
star graph can be computed analytically by directly solving the spectral equation. Since the
same roots may also be computed by using the periodic-orbit expansion formulae derived in
section 6, we obtain exact sum rules for the periodic orbits of the three-pronged star graph and
even some novel, arithmetic expansions of π2. While up to and including section 8, for the
purpose of definiteness, we assumed Dirichlet boundary conditions at the dead-end vertices,
we show in section 9 that this assumption is not necessary and state explicitly a spectral
formula that includes the case of Dirichlet boundary conditions and covers additional choices
of boundary conditions. In section 10, we discuss our results. In section 11, we summarize
our results and conclude this paper.

2. Spectral equation

We are looking for the bound states of the quantum particle on the graph. Denoting by m the
mass of the particle and by E its energy,

k =
√

2mE

h̄2 (1)

is the wave number of the quantum particle on the graph. Since we are only interested in
the bound states of the quantum graph, we assume, without restriction of generality, k > 0
throughout this paper. Referring to figure 2, we denote by ψa(xa), ψb(xb) and ψc(xc) the
wavefunctions of the quantum particle on the edges a, b and c, respectively. Then, assuming
Dirichlet boundary conditions at the vertices Va, Vb and Vc requires that

ψa(xa) = A sin[k(xa − a)], ψb(xb) = B sin[k(xb − b)],
(2)

ψc(xc) = C sin[k(xc − c)],

where A,B and C are constants. Continuity of the wavefunction at the central vertex V0

(xa = xb = xc = 0) requires

A sin(ka) = B sin(kb) = C sin(kc). (3)

There are many ways to implement flux conservation at the central vertex V0 [14]. A natural
choice is to require that the sum of the incoming (outgoing) derivatives at V0 be zero. In our
case this results in

A cos(ka) + B cos(kb) + C cos(kc) = 0. (4)

In order to obtain a bound state of the quantum graph, (3) and (4) have to be fulfilled
simultaneously. We consolidate conditions (3) and (4) into a single spectral equation whose
roots are the spectrum of the quantum graph. To this end, we multiply the first term in (4)
by BC sin(kb) sin(kc), the second term in (4) by AC sin(ka) sin(kc) and the third term in
(4) by AB sin(ka) sin(kb). Dividing the result by ABC and using appropriate trigonometric
identities, we obtain the following spectral equation of the three-pronged star graph,

cos(kL) − 1
3 [cos(kL1) + cos(kL2) + cos(kL3)] = 0, (5)
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Figure 3. Organization of the spectrum of the three-pronged star graph. The spectral points
k1, k2, . . . , the abscissae of the intersections (full dots) of cos(kL) (heavy line) with g(k) (thin line)
are organized into root cells Cn = In×[−1, 1], In = {k : nπ/L � k � (n+1)π/L}, n = 1, 2, . . . ,

such that there is exactly one spectral point (intersection) in each root cell. As an example, we
show root cell C1 (framed rectangle) together with its associated root interval I1 (double arrow).
Parameters: a = 1, b = 1/

√
2, c = 1/π .

where

L = a + b + c, L1 = |a + b − c|, L2 = |a − b + c|,
L3 = |a − b − c|. (6)

The solutions kn, n = 1, 2, . . . of (5) yield the quantum energy levels En of the three-pronged
star graph according to

En = h̄2k2
n

2m
, (7)

where m is the mass of the quantum particle on the graph. Closed-form algebraic solutions
of the spectral equation (5) can only be obtained in certain special cases, some of which are
briefly discussed in section 8. In the irrational case, (5) cannot be solved algebraically in
closed form. However, as shown in section 6, there is a way to obtain all solutions of (5)
explicitly, and analytically, using exact periodic-orbit expansions.

3. Organization of the spectrum

Figure 3 shows the functions cos(kL) (heavy line) and

g(k) = 1
3 [cos(L1k) + cos(L2k) + cos(L3k)] (8)

(thin line) for k > 0. The intersections of these two functions are the solutions k1, k2, . . . of
the spectral equation (5). We see that cos(kL) divides the k-axis naturally into intervals

In = {k|nπ/L � k � (n + 1)π/L}, n = 1, 2, 3, . . . , (9)

such that there appears to be exactly one root kn in each of the intervals In. For this reason
the intervals In are called root intervals [15]. In this section, we show that the organization of
the spectrum into a regular lattice of root intervals with precisely one spectral point per root
interval is rigorously true. This provides a global characterization of the spectrum, which is
the key to obtaining exact periodic-orbit expansions for each of the solutions of (5).

First, we prove that in the irrational case, except for the trivial root k0 = 0, none of the
roots of (5) occur at integer multiples of π/L. According to figure 3 this would be the case only
if |g(Nπ/L)| = 1, where N is an integer. But, according to (8) and because of |cos(Ljk)| � 1,
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this will happen only if k = 0 or cos(NLjπ/L) = ±1, j = 1, 2, 3. Except for the trivial case
k = 0 (no particle present), the latter condition implies that Lj/L, j = 1, 2, 3 are rational
numbers, which, in turn, implies that a, b, c are rationally related. This, however, contradicts
our assumption. Therefore, in the irrational case, none of the roots of (5) occur at multiples of
π/L. Since the multiples of π/L are the borders of the root intervals (9), we have the result
that, in the irrational case, and for all k > 0, the roots of (5) are located strictly inside of the
root intervals (9).

Next, we prove that the spectrum of (5) is non-degenerate. We see this in the following
way. Define the spectral function

f (k) = cos(kL) − 1
3 [cos(kL1) + cos(kL2) + cos(kL3)]. (10)

Then, the zeros of f (k) are the zeros of the spectral equation (5). Let k∗ be a degenerate zero
of f (k). Then

f (k∗) = 0, f ′(k∗) = 0. (11)

This implies the two equations

cos(k∗L) = 1
3 [cos(k∗L1) + cos(k∗L2) + cos(k∗L3)] (12)

and

sin(k∗L) = 1
3 [ω1 sin(k∗L1) + ω2 sin(k∗L2) + ω3 sin(k∗L3)], (13)

where

0 � ωj = Lj

L
< 1, j = 1, 2, 3. (14)

Adding the squares of (12) and (13) we obtain

1 = 1

9

{
3∑

j=1

[cos2(k∗Lj) + ω2
j sin2(k∗Lj)]

+
3∑

l �=m=1

[cos(k∗Ll) cos(k∗Lm) + ωlωm sin(k∗Ll) sin(k∗Lm)]

}

� 1

9

3∑
j=1

∣∣ cos2(k∗Lj) + ω2
j sin2(k∗Lj)

∣∣

+
1

9

3∑
l �=m=1

|cos(k∗Ll) cos(k∗Lm) + ωlωm sin(k∗Ll) sin(k∗Lm)|

< 1. (15)

This is so since, according to (14), ωj , j = 1, 2, 3 are strictly smaller than 1, and, since Ll is
irrationally related to Lm for l �= m, at most two of the sine functions in (15) may be zero. We
obtain a contradiction, which proves that degenerate zeros are impossible. Therefore, in the
irrational case, the spectrum of the three-pronged star graph is non-degenerate.

We call the rectangles Cn = In × [−1, +1] in figure 3 the root cells of the spectrum.
Figure 3 shows that cos(kL) divides each root cell into two equal parts with cos(kL)

representing the border line between these two parts. Since g(k) is a continuous function
that has to traverse both parts of a root cell as a function of k, and since |g(k)| � 1 for all
k > 0, there is at least one intersection of g(k) with cos(kL) in each root cell. This means that
there is at least one solution of (5) in each root interval In. We now show that there cannot be
any other.
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(a)

(b)

Figure 4. Hypothetical situation of two intersections in root cell C2N−1. (a) g(k) intersects
cos(kL) in two points, P and Q (dots), with the associated k values kP and kQ, respectively.
(b) Behavior of the spectral function f (k) in the vicinity of kP and kQ, the abscissae of the two
(hypothetical) intersections P and Q, respectively.

Let us focus first on the odd-numbered root cells C2n−1, n = 1, 2, . . . , in particular on
root cell C2N−1 as a representative. We already proved that there is at least one spectral point
in each root cell, i.e., there is at least one intersection of g(k) with cos(kL) in C2N−1. As
shown in figure 4(a) we denote by P, with the associated k value kP , the intersection with the
smallest k value in C2N−1. Let us now assume that there is a second intersection, Q, with the
associated k value kQ, in C2N−1 (see figure 4(a)). Since we already proved that all roots of
f (k) are simple and occur strictly inside of the root intervals, and since we assumed that kP

is the smallest zero in C2N−1, we have

(2N − 1)π/L < kP < kQ < 2Nπ/L. (16)

As shown in figure 4(a), cos(kL) starts at −1 in an odd-numbered root cell. Since we already
proved that |g(k)| � 1 for all k > 0, f (k), as defined in (10), is negative for k < kP and
positive for k > kP (see figure 4(b)) in the immediate vicinity of kP . Since there are no roots
between kP and kQ (both roots are simple, and by assumption kP is the first and kQ is the
second root), f (k) is positive for k < kQ and negative for k > kQ as shown in figure 4(b) in
the immediate vicinity of kQ. Therefore, the derivative

f ′(kQ) = lim
h→0

[f (kQ + h) − f (kQ − h)]/(2h), (17)

as the limit of a strictly negative quantity, is either zero or negative. Since we already showed
that all roots of f (k) are simple (i.e. f ′(k∗) �= 0 for all spectral points k∗), f ′(kQ) cannot be
zero. Therefore,

f ′(kQ) < 0. (18)

This, however, implies that

g′(kQ) > −L sin(kQL) > 0. (19)

At Q, with the associated spectral point kQ, we also have
1
3 [cos(L1kQ) + cos(L2kQ) + cos(L3kQ)] = cos(LkQ). (20)

Squaring (19) and (20) and adding their left- and right-hand sides, respectively, leads to the
same equations, and ensuing contradiction, as established in (15). This shows that a second
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intersection Q cannot exist in odd-numbered root cells. It is straightforward to adapt this
argument for the even-numbered root cells (in which cos(kL) is monotonically decreasing),
which shows that additional intersections Q are also not allowed in even-numbered root cells.
Thus, in summary, we have shown that there exists exactly one root (i.e. the spectral point)
per root interval.

The property of exactly one root per root interval suggests the following definition, which
will be useful in later sections. Since we showed that (in the irrational case) no roots occur on
the boundaries of the root intervals In, and since there is only a single root per root interval,
the boundaries nπ/L of the root intervals separate the roots of (5) from each other. Therefore,
we call the boundaries of the root intervals the root separators [16] and define the left and right
root separators of the spectral point kn in the following way:

k(−)
n = nπ/L < kn < k(+)

n = (n + 1)π/L, n = 1, 2, . . . . (21)

The root separators will play an important role in sections 5 and 6.
The lattice organization of the roots of (5), with precisely one spectral point per root

interval, implies that the average density of states of the three-pronged star graph is

ρ̄(k) = one root

root interval
= 1

π/L
= L

π
. (22)

This result is known and applies generally to all (non-dressed) quantum graphs [1–4]. The
point of presenting it here is to show that (22) (i) may be derived independently in an elementary
way via the root separators and (ii) is consistent with the known result.

There is another way of obtaining root separators sometimes used in the literature to
derive statistical properties of quantum graph spectra [11–13]. Defining l1 = a, l2 = b, l3 = c

and dividing (4) by (3) results in

3∑
b=1

cot(klb) = 0, (23)

which can immediately be generalized to
∑B

b=1 cot(klb) = 0, valid for any star graph with B
bonds and Dirichlet boundary conditions [11–13]. A separating set of the spectral equation (23)
is A′ = {jπ/lb, j = 1, 2, . . . , b = 1, . . . , B} [11–13]. This set is an unordered, interlacing
set of B incommensurate subsets. Because it is not ordered, it is not known which spectral
point kn is located between which root separators of A′. Thus, the set A′ is useless for isolating
the nth spectral point, and thus is useless for computing explicit spectral eigenvalues.

4. Scattering quantization

Using flux conservation and the continuity of the wavefunction is one way of deriving the
spectral equation for the three-pronged star graph. Another way is via scattering quantization
[1, 2, 14]. This method is better suited for our purpose of deriving explicit spectral formulae
in sections 5 and 6. Thus, the purpose of this section is to derive the graph scattering matrix S,
prove some useful properties of S and, eventually, rederive the spectral equation on the basis
of S.

The arrows in figure 5 indicate the six different ways, called channels, in which quantum
flux can move on a three-pronged star graph. The channels are numbered sequentially from
1 to 6; in figure 5 the channel numbers appear next to the corresponding channel arrows. In
channel 1, e.g., as indicated by the corresponding arrow, flux moves in the direction from V0

to Va .
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Figure 5. Channel assignment for the three-pronged star graph.

The 6 × 6 graph scattering matrix S(k) describes the redistribution of flux on the graph
following one scattering event at energy E = h̄2k2/(2m). Starting with unit flux in channel l,
the matrix element Sml is the amplitude of flux scattered from channel l into channel m. Thus
the index l refers to the input channels of S(k); the index m refers to the output channels.
Apparently, because of flux conservation,

6∑
m=1

|Sml(k)|2 = 1, l = 1, . . . , 6. (24)

In fact, since no flux is ever lost on the graph, S(k) is unitary, i.e.

S†(k)S(k) = 1, (25)

where 1 is the 6 × 6 unit matrix.
To construct the S matrix explicitly, consider the following example. A quantum particle

in channel 1, described by the wavefunction exp(ikxa), moves from V0 to the dead-end vertex
Va . On its journey to Va it picks up a phase exp(ika). Scattering off the dead-end vertex
Va , which, for Dirichlet boundary conditions, is equivalent to a ‘hard wall’, it picks up an
additional phase factor −1. Immediately after scattering off Va , the particle is ready to enter
channel 2, i.e. it will next travel from Va to V0. Apparently, when starting in channel 1 and
allowing for only one scattering event, channel 2 is the only exit channel the quantum particle
can scatter into. Therefore,

S21 = −eika, Sm1 = 0, m �= 2. (26)

This is the first column of the S matrix.
If we start in channel 2, we pick up the phase exp(ika) traveling from Va to V0. At V0 we

may transmit into channels 3 and 5 with transmission amplitudes t3 and t5, respectively, or we
may reflect off V0 and enter channel 1 with reflection amplitude r. The channel wavefunctions
in channels 3 and 5 are t3 exp(ikxb) and t5 exp(ikxc), respectively. Continuity of the scattering
wavefunction at V0 (xb = xc = 0) requires t3 = t5 = t . Therefore,

S12 = r eika, S22 = 0, S32 = t eika,

S42 = 0, S52 = t eika, S62 = 0.
(27)

8
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This is the second column of the S matrix. Similar reasoning, considering the graph scattering
problem with initial unit flux in channels 3, . . . , 6, establishes that

S(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 r eika 0 t eikb 0 t eikc

−eika 0 0 0 0 0
0 t eika 0 r eikb 0 t eikc

0 0 −eikb 0 0 0
0 t eika 0 t eikb 0 r eikc

0 0 0 0 −eikc 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

To derive the numerical values of the reflection and transmission amplitudes r and t in (28),
we need to solve the graph scattering problem at the central vertex V0. To do this, consider,
without restriction of generality, the scattering problem where the quantum particle is initially
in channel 2. In this case the wavefunction on edge a is exp(−ikxa) + r exp(ikxa), while the
wavefunctions on edges b and c are t exp(ikxb) and t exp(ikxc), respectively. Continuity of
the wavefunction at V0 (xa = xb = xc = 0) requires

1 + r = t. (29)

Flux conservation at V0 requires

−1 + r + 2t = 0. (30)

Solving the linear system of equations (29) and (30), we obtain

r = − 1
3 , t = 2

3 . (31)

All odd powers of S(k) have the structure (28). Therefore, it follows immediately that

Tr[S2N+1(k)] = 0, N = 0, 1, . . . , (32)

i.e. the trace of all odd powers of S is zero.
Next, we use the graph scattering matrix S(k) to rederive the spectral equation for the three-

pronged star graph. We reason in the following way. Since S(k) describes the redistribution
of flux on the graph, we obtain a stationary state |ψ〉 of the quantum graph if |ψ〉 is invariant
under application of S(k). This means that

S(k)|ψ〉 = |ψ〉. (33)

For a non-trivial solution |ψ〉 of this eigenvalue equation, we need to require that

det[S(k) − 1] = 0. (34)

This gives us a condition on the allowed values of k, which are the spectral points k1, k2, . . . of
the three-pronged star graph. But this, in turn, means that det[S(k) − 1] must have the same
zeros as the spectral function f (k) defined in (10). Indeed, an explicit calculation shows that

det[S(k) − 1] = 2 eikLf (k). (35)

Thus, as expected, det[S(k) − 1] has the same zeros as the spectral function f (k). We will
use this fact as the starting point for the derivation of the spectral staircase and the explicit
spectral formulae of the three-pronged star graph in the following sections.

5. Spectral points: explicit solution via reduction to quadratures

The purpose of this section is to solve the spectral equation (5) analytically. In preparation for
obtaining the explicit solution formula, we define

�2π (x) =
∞∑

m=−∞
θ(x − 2πm), (36)

9
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Figure 6. Graph of �2π (x).

where

θ(x) =
⎧⎨
⎩

0, for x < 0,

1/2, for x = 0,

1, for x > 0
(37)

is Heaviside’s step function. A plot of �2π (x) is shown in figure 6. It is a staircase function
with unit step height and step width 2π . �2π (x) is normalized such that �2π (0) = 1/2. This
way we have �2π (x) = θ(x) in −2π < x < 2π . A Fourier series representation of �2π (x) is

�2π (x) = 1

2
+

x

2π
+

1

π

∞∑
m=1

sin(mx)

m
. (38)

Next, we define the spectral staircase of the three-pronged star graph according to

N(k) =
∞∑

n=1

θ(k − kn). (39)

Note that we do not include the trivial zero k0 = 0 in the definition of the spectral staircase
since k0 = 0 corresponds to the graph without a quantum particle on it. Thus, N(k) is zero
until it hits the first non-trivial spectral point k1 > 0.

Concluding the preliminaries, consider the spectral staircase (39) in the interval k(−)
n <

k < k(+)
n , where k(−)

n and k(+)
n are the root separators defined in (21). As shown in figure 7, the

staircase function equals n − 1 for k(−)
n < k < kn, jumps by one unit at k = kn and equals n

for kn < k < k(+)
n . Therefore∫ k

(+)
n

k
(−)
n

N(k) dk = (n − 1)
[
kn − k(−)

n

]
+ n

[
k(+)
n − kn

]
. (40)

Solving this equation for kn and using the expressions (21) for k(−)
n and k(+)

n , we obtain

kn = 2nπ

L
−
∫ (n+1)π/L

nπ/L

N(k) dk. (41)

This is an explicit formula for kn as soon as we have an explicit expression for N(k). Therefore,
in the remainder of this section, we will derive this expression.

We start with the spectral equation in the form (34). Since S(k) is unitary, it can be
diagonalized. Its eigenvalues are λj (k) = exp[iσj (k)], j = 1, . . . , 6, where σj (k), called
S-matrix eigenphases, are real for all k. Since the spectral equation

det[S(k) − 1] =
6∏

j=1

[eiσj (k) − 1] = 0 (42)

10
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Figure 7. Staircase function N(k) in the vicinity of the spectral point kn.

is satisfied as soon as any one of the σj (k) is an integer multiple of 2π , we may write the
spectral staircase (39) in the form

N(k) = N0 +
6∑

j=1

�2π [σj (k)], (43)

where N0 is a constant. We note that since for k > 0 the zeros of (5) (or, equivalently, (34))
are simple, no two σj (k) are ever simultaneously integer multiples of 2π for k > 0.

Since the trace of a matrix is invariant under unitary transformations, the trace of S is the
same as the trace of the diagonalized S. Using this fact, we obtain

Im Tr[Sn(k)] = Im
6∑

j=1

einσj (k) =
6∑

j=1

sin[nσj (k)]. (44)

With this result and using the Fourier representation (38) of �2π , we may write (43) in the
form

N(k) = N0 +
6∑

j=1

{
1

2
+

σj (k)

2π
+

1

π

∞∑
m=1

sin[mσj(k)]

m

}

= N0 + 3 +
1

2π

6∑
j=1

σj (k) +
1

π
Im Tr

∞∑
m=1

1

m
Sm(k). (45)

We evaluate the sum over the S-matrix eigenphases in the following way. First, we note that

det[S(k)] =
6∏

j=1

exp[iσj (k)] = exp

⎡
⎣i

6∑
j=1

σj (k)

⎤
⎦ . (46)

Then, the direct algebraic calculation of det[S(k)], using its explicit representation (28), yields

det[S(k)] = exp(2 ikL). (47)

Therefore,

6∑
j=1

σj (k) = 2kL. (48)

11
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Inserting this equation into (45) we obtain

N(k) = N0 + 3 +

(
kL

π

)
+

1

2π
Im Tr

∞∑
m=1

1

m
S2m(k), (49)

where we also used the fact (see (32)) that the traces of all odd powers of S are zero.
We are now ready to determine the constant N0. According to (39) the spectral staircase

N(k) is zero in the interval 0 < k < ε, where 0 < ε 	 k1. The constant N0 has to
be determined to reflect this fact. We derive N0 from (43), which requires knowledge
of the eigenphases σj (k) for small k. For k = 0 it is straightforward to diagonalize
S(k) defined in (28) analytically. We obtain the eigenvalues λ1(0) = 1, λ2(0) = 1,

λ3(0) = −1, λ4(0) = −1, λ5(0) = −i and λ6(0) = i. Since λ = exp(iσ), and
taking (48) into account, which implies

∑6
j=1 σj (k = 0) = 0, we obtain the eigenphases

σ1(k = 0) = 0, σ2(k = 0) = 0, σ3(k = 0) = −π, σ4(k = 0) = π, σ5(k = 0) = −π/2
and σ6(k = 0) = π/2. Other phase conventions may be used. They will not change the
following results as long as they are consistent with (48). Since the S-matrix eigenphases
are continuous and monotonically increasing functions of k [1, 2, 14], we now obtain (see
figure 6) θ2π (σ1(ε)) = 1, θ2π (σ2(ε)) = 1, θ2π (σ3(ε)) = 0, θ2π (σ4(ε)) = 1, θ2π (σ5(ε)) = 0
and θ2π (σ6(ε)) = 1. This means that

∑6
j=1 θ2π (σj (ε)) = 4 and therefore, since N(ε) =

0, N0 = −4. With this result we arrive at the explicit expression

N(k) = −1 +

(
kL

π

)
+

1

2π
Im Tr

∞∑
m=1

1

m
S2m(k). (50)

This expression for the spectral staircase function is consistent with the results presented in
[4]. We now use (50) in (41) to arrive at the explicit formula

kn = π

L

(
n +

1

2

)
− 1

2π
Im Tr

∞∑
m=1

1

m

∫ (n+1)π/L

nπ/L

S2m(k) dk (51)

for the spectral points of the three-pronged star graph. This result still contains integrals
(quadratures) to perform. An integral-free expression in terms of periodic orbits is derived in
the following section.

6. Exact periodic-orbit expansions

Since r and t are constants, the matrix elements of the S matrix (28) are simple exponential
functions of k, and powers of the S matrix are sums of exponential functions. Therefore, there
is no problem to perform the integrals in (51) analytically, term by term. However, if we aim
for explicit, analytical formulae for these integrals, we need an efficient way of book keeping,
i.e., we need a way of writing down the sums of exponential functions generated by the powers
of the S matrix in (51). Periodic-orbit theory provides the book keeping we are looking for.
The key is to relate the trace of S2m(k) to periodic orbits on the graph. To get a feeling of how
this works, let us look at the first term of the sum in (51) which requires us to compute

Tr[S2(k)] = 2[−r e2 ika − r e2 ikb − r e2 ikc]. (52)

We interpret this result in terms of periodic orbits in the following way. The first term inside
the brackets in (52) corresponds to a quantum particle starting somewhere on edge a, heading
toward the central vertex, reflecting off the central vertex V0 to return to edge a, reflecting
off the dead-end vertex Va and returning to its starting point on a. This way the particle has
traversed the shortest possible periodic orbit on edge a. Reflecting off the central vertex V0,

12
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the particle acquires the phase factor r, and reflecting off the dead-end vertex Va , it acquires
the phase factor −1. This accounts for the factor −r in front of the first exponential function
inside the brackets in (52). The argument of this exponential function is i times the total
classical action (in units of h̄),

∫
k dx = 2ka, accumulated by the particle on its round trip

traversing the periodic orbit. A similar interpretation applies to the second and third terms in
(52). The global factor 2 multiplying the brackets in (52) arises because of the time-reversal
invariance of the dynamics of the quantum particle on the graph. Equivalently, the factor 2
may also be seen as arising from the fact that the particle may traverse a periodic orbit with its
initial momentum directed away from the central vertex or directed toward the central vertex
without changing the phase factors or the exponential factors in (52). Similar reasoning may
be applied to higher powers of S. We obtain

Tr S2m(k) = 2
∑

p

∑
νlp=m

lp[(−1)lp rαp tβp ]ν eiνkLp . (53)

The different symbols in (53) have the following meanings. The first sum in (53) is over
all primitive periodic orbits p of the three-pronged star graph. A primitive periodic orbit is
one that cannot be interpreted in terms of multiple traversals of a shorter periodic orbit. The
symbol lp denotes the total number of bounces of p off the dead-end vertices of the graph.
The symbol ν is the repetition index. It denotes the number of times the primitive periodic
orbit is traversed. According to the restriction on the second sum in (53), νlp = m, not all
periodic orbits enter into the sum for given m. Only those periodic orbits enter whose ‘length’
lp in terms of number of bounces off the dead-end vertices divides m. The symbols αp and βp

in (53) denote the number of reflections off and transmissions through the central vertex V0,
respectively. The total physical length of the primitive periodic orbit p in terms of the edge
lengths a, b and c is denoted by Lp in (53).

With (53) we are now ready to perform the integrals in (51), obtaining

kn = π

L

(
n +

1

2

)
− 2

π

∞∑
m=1

∑
p

∑
νlp=m

1

ν2Lp

[(−1)lp rαp tβp ]ν

× sin

[
νπ

(
n +

1

2

)(
Lp

L

)]
sin

[
νπ

(
Lp

2L

)]
. (54)

With this equation we have arrived at the central result of this paper: an explicit, exact,
integral-free periodic-orbit expansion of the spectral points of the three-pronged star graph.

7. Convergence

In order to assess the speed of convergence of the explicit spectral formulae (51) and (54), we
define k(M)

n as an approximation to the exact spectral point kn by including only the first M
terms in the m sums of (51) (or, equivalently, (54)). Figure 8 shows

�
(M)
1 = ∣∣k(M)

1 − k1

∣∣ (55)

(ragged line) as a function of M computed via formula (51). We see that �
(M)
1 converges to

zero, i.e., (51) converges to the exact spectral point k1. Also shown in figure 8 is the function
0.1/M2 (straight line) to guide the eye. We see that on average �

(M)
1 is close to 0.1/M2,

i.e. �
(M)
1 ∼ 1/M2. Since (54) is equivalent to (51), (54) has the same convergence behavior

in M after summation over the periodic orbits is performed for each m term in (54). We
checked that qualitatively the same behavior, including the ∼1/M2 convergence, is observed
for �(M)

n , n = 10, 100, 1000.

13
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Figure 8. Convergence of k
(M)
1 as a function of the number M of S-matrix terms included in the m

sum of (51). The ragged line is the absolute value �
(M)
1 = |k(M)

1 −k1| of the difference between the

truncated value k
(M)
1 and the exact value k1. We see that �

(M)
1 → 0, i.e., k

(M)
1 → k1 for M → ∞.

A straight line, 0.1/M2, is drawn to guide the eye and to corroborate the ∼1/M2 convergence of
�

(M)
1 . Parameters: a = 1, b = 1/

√
2, c = 1/π .

The number of periodic orbits to be summed for given m is [17]

Nm = 1

m

∑
d|m

φ(d)3m/d, (56)

where the sum is over all divisors of m (including d = 1 and d = m) and φ is Euler’s totient
function. As an order-of-magnitude estimate we approximate Nm by the first term (d = 1) in
(56) and obtain Nm ≈ 3m/m. Therefore, the total number of periodic orbits included up to
m = M is

N (M) =
M∑

m=1

Nm ≈
M∑

m=1

3m/m ≈ 3M+1/(2M). (57)

Solving this equation for M and keeping only terms of leading order in M, we obtain
M ≈ ln[N (M)]/ ln(3) or

�
(M)
1 ∼ 1/{ln[N (M)]}2. (58)

From (58) we see that the periodic-orbit expansion (54) converges extremely slowly in the
number of periodic orbits N (M). On the other hand, we see from figure 8 that even for small
M, i.e. only a few periodic orbits are included, the accuracy is already very good. Therefore,
concerning our three-pronged star graph, we obtain the following recommendation: periodic-
orbit expansions are the tool of choice if modest, but uniform accuracy is required over the
entire spectral range from k = 0 to k = ∞. For M = 3, for instance, 20 periodic orbits are
included in (54). We checked that in this case

∣∣k(3)
n − kn

∣∣ < 0.135 for 1 � n � 105. For
M = 4, corresponding to 44 included orbits, we obtain

∣∣k(4)
n − kn

∣∣ < 0.097 for 1 � n � 105.
Thus, compared with the length π/L = π/(1 + 1/

√
2 + 1/π) ≈ π/2 of the root interval,

the relative error is uniformly smaller than 10% if the first 20 periodic orbits are included; it
is smaller than 7% if the first 44 periodic orbits are included. If high accuracy is required,
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periodic-orbit expansions will fail. For example, as shown in figure 8, for �
(M)
1 ∼ 10−7 we

need M ∼ 1000, which corresponds to N (M) ∼ 31000 ≈ 10477 periodic orbits. Therefore,
in cases where the aim is not a deeper analytical understanding of the global properties of
the spectrum, but high-accuracy results of individual spectral points, numerical methods are
recommended.

8. Rational case

Up until now, we focused our discussion of the spectrum on the irrational case in which none
of the edge lengths a, b and c of the three-pronged star graph are rationally related. We did
this to avoid complications in the discussion. For instance, only in the irrational case do we
arrive at the spectral equation (5) by equivalence transformations, while these transformations
may result in ‘illegal’ operations (for instance, division by zero) in the rational case. However,
it turns out that (5) is valid in the rational case, too. This can be understood on the basis of
a ‘perturbation argument’. Perturbing away from rational, we are in the irrational case where
(5) applies. Since the roots for the rational case should go smoothly into the roots for the
irrational case when we approximate the rational case with a sequence of irrational numbers,
the same spectral equation is expected to hold.

A similar problem exists with the root separators. In the rational case, zeros of (5) may
lie squarely on the root separators. Also, the spectrum may no longer be simple and energy
levels may be up to two-fold degenerate. Even more: degenerate zeros of (5) may lie on the
root separators. All these observations may produce considerable concern until we realize
that (i) the final result (54) is entirely based on the S matrix, which applies irrespective of
whether we are in the rational or in the irrational case, (ii) the possibility of degenerate roots is
automatically included and properly accounted for by the staircase function (50) and (iii) the
general formula (41) works even if a single or a double root coincides with a root separator.
All this taken together means that the periodic-orbit expansion (54) works even in the rational
case.

The rational case does not only offer difficulties. It also offers something new. Since
some star graphs with rationally related edge lengths are algebraically solvable, the spectrum
of the three-pronged star graph may be expressed in two ways, algebraically and with the help
of the periodic-orbit expansion (54). This results in sum rules for the periodic orbits on the
three-pronged star graph. For a = b = c, e.g., we can compute all the powers of S analytically.
We obtain

Tr S4m+2(k) = 2 e(4m+2) ika, m = 0, 1, 2, . . . ,
(59)

Tr S4m(k) = 6 e4m ika, m = 1, 2, . . . ,

from which we obtain the periodic-orbit sum rules

∑
p

∑
νlp=m

lp

[
(−1)lp

(
−1

3

)αp
(

2

3

)βp

]ν

=
{

1, for m = 1, 3, 5, . . . ,

3, for m = 2, 4, 6, . . . .
(60)

Moreover, for a = b = c, the first non-trivial solution of (5) is k1 = π/(2a). Since, for
a = b = c, we know all the powers of S analytically, this root can also be computed via (51).
Equating both results and solving for π2, we obtain

π2 = 1
1
2 (δ2 − δ1) − 3

4 (δ2
2 − δ2

1)

∞∑
m=1

1 + 2(−1)m

m2
[cos(mπδ1) − cos(mπδ2)], (61)
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where we chose the root separators

k
(−)
1 = π

2a
(1 − δ1), k

(+)
1 = π

2a
(1 + δ2), 0 < δ1, δ2 � 1. (62)

Since π occurs in the arguments of the cosine functions on the right-hand side of (61), (61) does
not appear to be an explicit expansion of π2. However, if we choose δ1 and δ2 rational, such
that the cosines in (61) can be evaluated algebraically, we obtain a host of novel, arithmetic
series expansions for π2. The well-known formula

π2 = 8
∞∑

m=0

1

(2m + 1)2
(63)

is included in (61) for the choice δ1 = 1, δ2 = 1/2.

9. Alternative boundary conditions

Up to now, we assumed Dirichlet boundary conditions at the dead-end vertices Va, Vb and Vc.
However, we may specify any combination of Dirichlet or Neumann boundary conditions at
the vertices and our methods still work. Let us define

ϕ =
{−1, for Dirichlet boundary conditions,

+1, for Neumann boundary conditions,
(64)

and let ϕa, ϕb, ϕc denote the phases corresponding to the boundary conditions chosen at Va, Vb

and Vc, respectively. Then, the S matrix is

S(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 r eika 0 t eikb 0 t eikc

ϕa eika 0 0 0 0 0
0 t eika 0 r eikb 0 t eikc

0 0 ϕb eikb 0 0 0
0 t eika 0 t eikb 0 r eikc

0 0 0 0 ϕc eikc 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (65)

We see that, except for the phase factors, the S matrix (65) is the same as the S matrix (28).
This means that all derivation steps that lead to the periodic-orbit expansions of the spectral
points remain valid if ϕa, ϕb and ϕc are properly accounted for. We obtain

kn = π

L

(
n +

1

2

)
− 2

π

∞∑
m=1

∑
p

∑
νlp=m

1

ν2Lp

[
ϕ

γp

a ϕ
ηp

b ϕ
μp

c rαp tβp
]ν

× sin

[
νπ

(
n +

1

2

)(
Lp

L

)]
sin

[
νπ

(
Lp

2L

)]
, (66)

where γp, ηp and μp are the number of reflections of the primitive periodic orbit p off Va, Vb

and Vc, respectively.

10. Discussion

Bohr’s model of the hydrogen atom (1913) and all subsequent pre-1925 models of atomic and
molecular systems are based on the idea of obtaining their spectra by quantizing periodic orbits
[18]. It is often suggested that the elimination of periodic orbits from quantum mechanics
is one of the central accomplishments of the exact formulation of quantum mechanics by
Heisenberg and Schrödinger in 1925/1926. However, it is becoming more and more evident
that periodic-orbit quantization is an alternative way of formulating quantum mechanics for
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bounded systems. Contrary to the ‘old’, pre-1925 quantum mechanics, however, all periodic
orbits of a quantum system have to be taken into account to obtain exact quantization results.
This way periodic-orbit theory reminds us of the ancient Ptolemaic theory of epicycles, a
generalized Fourier expansion technique that is exact if an infinite number of cycles are taken
into account. In the case of quantum graphs, we have a quantum system that is analytically
accessible in every detail and thus illustrates the idea of exact periodic-orbit quantization.
Thus, quantum graphs are a paradigm system in periodic-orbit theory and quantum complexity,
comparable in importance to the hydrogen atom and the harmonic oscillator in ‘conventional’
quantum theory.

Periodic-orbit solutions (54) and (66) are a qualitative step forward in several ways.
(i) The three-pronged star graph is the first branched quantum graph that has ever been solved
explicitly. (ii) A binary symbolic dynamics [18, 19] is no longer sufficient to label the periodic
orbits. A ternary symbolic dynamics is necessary, for instance, one consisting of the three
symbols A, B and C that refer to the three dead-end vertices Va, Vb and Vc, respectively. (iii)
According to the classification scheme established in [10], the three-pronged star graph is a
marginal quantum graph with an order between 0 and 1 that does not satisfy the regularity
condition [8, 9]. Such quantum graphs have never before been solved in the literature. Thus,
the three-pronged star graph is the highest-order quantum graph that has so far been solved
explicitly in terms of exact periodic-orbit expansions. (iv) Since the three-pronged star graph
does not satisfy the regularity condition [8], we constructed a new proof of the ‘one-root-per-
root-cell’ property (see section 3). After straightforward adaptation, this proof also works for
all zero-order quantum graphs that strictly satisfy the regularity condition. (v) The dynamically
regular quantum graphs that have so far been solved in the literature [8, 9, 16] exhibit a non-
zero spectral gap sn = kn+1 − kn > κ > 0 that prevents us from accessing the small-spacing
regime s → 0 when using the explicit spectral formulae as a starting point for statistical
investigations of the level spectrum of quantum graphs. The three-pronged star graph is the
first explicitly solved quantum graph that allows access to the small-spacing regime.

There are various ways in which the three-pronged star graph, and in fact all finite quantum
graphs, may be implemented (approximately) experimentally. We mention implementation
of quantum graphs as a network of fiber-optic cables [8] or a network of vibrating guitar
strings. The implementation of a quantum graph as a microwave network has already been
accomplished in the laboratory [20, 21].

The spectral equation (5) is a member of the class of transcendental, almost-periodic
functions [22]. Thus, the explicit solutions derived in this paper contribute to the mathematical
problem of computing the zeros of this class of functions.

11. Summary and conclusion

In this paper, we computed explicitly, analytically and exactly the spectrum of the three-
pronged star graph. It is surprising that this is possible at all, since, in general, its spectral
equation is a transcendental function. While this result extends the frontier of explicitly solved
quantum graphs to the marginal ones with order between 0 and 1, the real importance of our
work is to serve as a template for further developments in the solution of other quantum
systems. In fact, using similar methods, it has recently been possible to solve the spectral
problem of the one-dimensional, finite square-well potential [23] and the one-dimensional
delta atom [24]. In addition, combining our methods with the spectral hierarchy scheme
outlined in [16], the same approach can be used to compute the spectra of quantum star graphs
with more than three bonds, explicitly and exactly.
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